上海科技大学人力资源管理
ShanghaiTech University Human Resources
蔡明亮    副所长、正教授
所在学院数学科学研究所
研究方向微分几何,数学相对论
联系方式caiml@@shanghaitech.edu.cn
 
 个人简介 
1978.10-1982.07,江苏师范大学(原徐州师范学院),本科
1982.09-1985.07,南京大学,硕士研究生
1985.09-1991.05,宾夕法尼亚大学,博士研究生
1991.08-1997.07,迈阿密大学,助理教授
1997.07–至今,迈阿密大学,副教授
2018.12–至今,上海科技大学,数学科学研究所常任正教授、副所长
 主要研究内容 
具有几乎非负Ricci 曲率的非紧流形的拓扑结构,具有非负数量曲率流形的几何结构,黑洞的拓扑结构,以及渐进平坦、渐进双曲流形的正质量和刚性问题。
 代表性论文 
1. Ends of Riemannian manifolds with nonnegativeRicci curvature outside a compact set.  Bull. Amer. Soc., 2 (1991), P.371-377.
2. A splitting theorem for manifolds of almost nonnegative Ricci curvature. Ann. Global Analysis and Geometry. 11 (1993), P. 373-385.
3. On Gromov's large Riemannian manifolds, Geometriae Dedicata. 50 (1994),P. 37-45.
4. (With Tobias Colding and DaGang Yang) A gap theorem for ends of open Riemannianmanifolds.  Proc. Amer. Math. Soci. (123) 1995. P.247-250.
5. (with G. Galloway) Rigidity of tori in 3-manifolds of non-negative ScalarCurvature.  Comm. Anal. Geom. 8(2000), p. 565-573.
6. (with G. Galloway) Boundaries of zero scalar curvature in the Ads/CFTcorrespondence.  Adv. Theor. Math. Phys. 3 (2000), no. 6, 1769-1783.
7. (with G. Galloway) On the topology and area of black holes.  ClassicalQuantum Gravity 18 (2001), no. 14, 2707-2718.
8. Volume Minimizing hypersurfaces in Manifolds of nonnegative scalarcurvature. Advnced Studies in Pure Mathematics 34, 2002.  Minimalsurfaces, Geometric Analysis and Simplectic Geometric. P. 1-7.
9. (with Lars Anderson and Greg Galloway) Rigidity and positivity of massfor asymptotic hyperbolic manifolds. Ann. Henri Poncare, 9(2008) 1-33.
10. On rigidity of gradient shrinking Ricci soliton of nonnegative sectionalcurvature. Pacific Journal of Mathematics, 271(2015), 61-76