|
个人简介 |
2002年本科毕业于南京大学生物系;2008年在北京生命科学研究所(NIBS)/北京协和医学院获博士学位;随后在美国德州大学西南医学中心做博士后,对细胞程序性坏死的机制进行研究;2010随导师实验室转回北京生命科学研究所。2014年12月加入上海科技大学生命科学与技术学院任助理教授、研究员。 |
主要研究内容 |
蛋白激酶RIP3介导的程序性坏死在机体发育,针对病原感染的免疫反应,以及器官退行性疾病的机体病变等多种生物过程中起着关键的作用。以TNF受体激活起始的程序性坏死通路为例,细胞的程序性坏死主要由受蛋白激酶RIP1和RIP3的激酶活性调控。伪激酶MLKL作为蛋白激酶RIP3的底物直接引起了细胞坏死。在体内,细胞程序性坏死的功能在于清除受损或被感染的细胞,并引起体内的免疫反应以达到对器官受损或感染区免疫监控的作用。在对心、肝、脑、肾等的多种器官退行性疾病模型研究中,疾病的发展及加重被证明伴随超量的程序性坏死的发生。这些超量的程序性坏死是药物毒性,钙离子超载,器官缺血及再灌注等导致的器官损伤引起的,并直接导致了器官二次损伤。 我们的研究方向将专注程序性坏死通路在退行性疾病中的调控。我们将利用多种方法将寻找程序性坏死信号在疾病发展中的关键节点,包括利用化学遗传学开发合适的小分子化合物工具;以及研究在程序性坏死通路起关键作用的调控蛋白的结构和生物物理学性质,以最终解析细胞程序性坏死在人类疾病中的作用。 |
代表性论文 |
1. Xia, B., Fang, S., Chen, X., Hu, H., Chen, P., Wang, H.#, and Gao, Z.# (2016).MLKL forms cation channels. Cell Res. (#Corresponding author) 2. Li, D., Xu, T., Cao, Y., Wang, H., Li, L., Chen, S., Wang, X., and Shen, Z. (2015). A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci U S A,112, 5017-5022. 3. Su, L., Quade, B., Wang, H., Sun, L., Wang, X., and Rizo, J. (2014). A plug release mechanism for membrane permeation by MLKL. Structure, 22, 1489-1500. 4. Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, LF., Wang, FS., and Wang, X. (2014) Mixed Lineage Kinase Domain-like protein MLKL Causes Necrotic Membrane Disruption Upon Phosphorylation by RIP3. Mol Cell, 54, 133-146. (Selected as the Cover Story of Mol Cell; Story of this work was selected by Faculty of 1000 Biology.) 5. Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., and Wang, X. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-227. 6. Sun, L., Wang, H., Hu, J., Han, J., Matsunami, H., and Luo, M. (2009). Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A, 106, 2041-2046. 7. Liang, P.*, Wang, H.*, Chen, H.*, Cui, Y., Gu, L., Chai, J., and Wang, K. (2009). Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation. The Journal of biological chemistry, 284, 4960-4967. (*Equal contribution) 8. Chen, L.*, Wang, H.*, Zhang, J., Gu, L., Huang, N., Zhou, J.M., and Chai, J. (2008). Structural basis for the catalytic mechanism of phosphothreonine lyase. Nature structural & molecular biology, 15, 101-102. (*Equal contribution) 9. Wang, H.*, Yan, Y.*, Liu, Q., Huang, Y., Shen, Y., Chen, L., Chen, Y., Yang, Q., Hao, Q., Wang, K., et al. (2007). Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nature neuroscience, 10, 32-39. (*Equal contribution) 10. Han, Z., Guo, L., Wang, H., Shen, Y., Deng, X.W., and Chai, J. (2006). Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Molecular cell, 22, 137-144. 11. Zhang, T., Sun, Y., Tian, E., Deng, H., Zhang, Y., Luo, X., Cai, Q., Wang, H., Chai, J., and Zhang, H. (2006). RNA-binding proteins SOP-2 and SOR-1 form a novel PcG-like complex in C. elegans. Development, 133, 1023-1033. |